Manual testing is a type of software testing in which testers execute test cases without the use of automation tools or scripts. Instead, testers follow a series of predefined steps to verify that a software application or system functions correctly and meets its requirements. Manual testing is an essential part of the software testing process and is typically performed alongside automated testing, where applicable. Here are some key aspects of manual testing: Test Case Design : Testers create test cases based on the software's requirements, specifications, and design documents. These test cases outline the steps to be followed, the expected results, and any necessary preconditions. Test Execution: Testers manually execute the test cases by interacting with the software just like a user would. They input data, navigate through the user interface, and observe the system's behavior. Exploratory Testing: In addition to predefined test cases, manual testers often perform ex
Boundary-value analysis is a variant and refinement of equivalence partitioning, with two major differences: First, rather than selecting any element in an equivalence class as being representative, elements are selected such that each edge of the EC is the subject of a test. Boundaries are always a good place to look for defects. Second, rather than focusing exclusively on input conditions, output conditions are also explored by defining output ECs. What can be output? What are the classes of output? What should I create as an input to force a useful set of classes that represent the outputs that ought to be produced? The guidelines for boundary-value analysis are: · If an input specifies a range of valid values, write test cases for the ends of the range and invalid-input test cases for conditions just beyond the ends. Example: If the input requires a real number in the range 0.0 to 90.0 degrees, then write test cases for 0.0, 90.0, -0.001, and 90.001. · If an input specifies a numb